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Results are obtained on the thermal self-action effect of an initially Gaussian 
beam in a subsonic weaklyrabsorbent gas flow in a broad range of similarity 
parameters. 

The thermal self-action effect [i-3] in a homogeneous gas flow [4, 5] has been investi- 
gated well up to now for convective [6] and supersonic [7] gasdynamic modes. Individual 
computations have been performed for the heat conductive [8] and subsonic [9-11] modes. 
Finite difference schemes (explicit [12] and implicit [13]), the finite elements method [14], 
and the method of discrete Fourier transform using the fast Fourier transform [10, 15, 16] 
have been used to construct the solution of the paraxial optics equation. A distinct degree 
of efficiency was detected for some algorithms in different self-action modes and conditions. 
For instance, application of the method of expansion in discrete Fourier series yields more 
accurate results (other conditions being equal) for moderate Fresnel numbers comparable to 
one, while the explicit finite-difference scheme is better for high numbers. This latter 
scheme was applied successfully to investigate the supersonic mode, but it is less convenient 
and suitable for the other modes. The algorithm of [12] yields less accurate results for 
high values of the self-action parameter (than the implicit scheme). The Krank-Nicholson 
implicit scheme yields less accurate results for large Fresnel numbers than does the implicit 
scheme. The algorithms for construction of the solution manifest a considerable sensitivity 
to a change in the number M. This is because the type of the gasdynamics equations changes 
during passage from one mode to another. The present paper is devoted to a study of the 
thermal self-action effect in the subsonic mode for which the flow velocity is the same order 
as the speed of sound in an unperturbed medium. In the papers mentioned above devoted to 
the subsonic mode, the results are sparse and incomplete, so that it is impossible to set 
up a complete set of similarity parameters and it is impossible to make a quantitative com- 
parison. In this connection, comparison of the results obtained by using different algor- 
ithms in this paper is quite important. 

The propagation process for a beam with small divergence in a moving weakly absorbent 
medium is described by the following system of dimensionless equations and boundary conditions 

2F O___.~u -5 iV~tt = - -  [2iFNpx (I, M) -5 FN~] u, ( 1 ) 
Oz 

uL=o = uo(x, y); -+0, (2) 

-,- o, I --,-0. (4)  
OX Ix,y~• 

Here I = uu* is the radiation intensity and Ap/po = epl. The x,y coordinates transverse to 
the beam are referred to the radius a, the longitudinal coordinate z is referred to the char- 
acteristic track length L, and the field function to IVy0. We select the initial distribu- 
tion Gaussian u 0 = exp{--(x = + y2)/2}. 

A dimensionless formulation of the problem is convenient in that it permits diminishing 
the number of parameters being given by more than twice. The dimensionless parameters 
characterize the role and influence of various physical factors: diffraction, molecular ab- 
sorption, thermal self-action, acoustics, and forced convection. It is natural to take the 
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Fig. i. Isochores, isophots, domains of amplification shaded) 
and diminution of the intensity in comparison with the initial 
section M = 0.8, F = 5, N = i, N~ = 0. 

thermal self-action length as the characteristic extent of the track for a study of the 
thermal self-action effect. We shall henceforth consider the self-action parameter to 
equal one: N = I. 

The manifold of numerical schemes and methods of solving the problem under considera- 
tion is due, as already noted, to the suitability and efficiency of the algorithm in aFpli- 
cation to a specific problem being solved, to a specific mode, to specific conditions that 
similarity parameters can characterize. As a rule, the order of the approximation is indi- 
cated for the algortihms listed in the introduction, but there is no strict proof of tLe 
stability and convergence. The authors are interested primarily in the practical realiza- 
tion and results. 

A strict mathematical foundation is given for the algorithm in [16] under the assump- 
tion that the right side of (i) is a known function of u. The crux of the algorithm is the 
following. We expand the field function u, the right side of (i), and the initial distri- 
bution u0(x, y) in a discrete Fourier series in a sufficiently large domain [Lx, Ly] with 
sufficiently shallow steps Ax, by. We consequently obtain a nonlinear ordinary differen- 
tial equation (the coordinate z is the independent variable) for the spectrum coefficients 
of the function u. Linearizing by a simple iteration process and solving this equation by 
some method, we find the spectral coefficients and therefore the desired field function. 
The relation between the functions Pl and u that is given by (3) can be determined by ex- 
pansions in either discrete complex exponential [i0'] or sine and cosine Fourier series (de- 
tails will be mentioned below). 

The algoirthm described was realized for computations on an electronic computer in 
several modifications of the organization of the iteration process. The quantity of iter- 
ations for a given computation error not higher than one percent turned out to be within 
reasonable limits (5-6) just for small values of the Fresnel number (O f the order of one) 
and for F ~ 5 the quantity of the iterations grows to 10-15. The machine time of the com- 
putation increases substantially. Application of the Newton method or gradient methods 
(steepest descent method, say) causes growth of the expenditure in the machine memory a:~d 
consequently does not yield the desired machine time reduction. These circumstances pro- 
duce inconvenience for massive parametric computations. 

As is shown in [i0], the second order of the approximation has the following scheme: 

i 2 N~ Az 1 * J ~  

(5) 

x exp l - -  ' i 2 
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Fig. 2. Dependences of the maximal intensity Imax(Z) for a 
Gaussian beam in the subsonic mode of thermal self-action for 
similarity parameter variations: a) F; b) Ne; c) M. 

The field function is expanded in Fourier series for whose summation the fast Fourier 
series for whose summation the fast Fourier transform is usually utilized. Conversion from 
the j-th layer in z to the (j + l)-th includes three sequential steps. At the beginning we 
calculate the diffraction perturbation and the moleculear attentuation of the beam at a half- 
step Az/2 distance (the action of the nearest operator on the function uJ). We use the 
field function obtained to determine the main terms of the density perturbation Pl according 
to (3)and we compute the self-action in the step Az (the action of the mean operator on the 
field function obtained in the first step). In the third, concluding, step, we calculate 
the diffraction perturbation and molecular attenuation in the second half-step Az/2 (the ac- 
tion of the third operator of (5) on the field function obtained earlier). .Later the third 
and first steps can be combined in order to reduce machine computation time. However, be- 
fore printing the results (graphs), the next diffraction half-step must be made to calculate 
the desired field function at a node standing an integer number of steps Az off from the ini- 
tial section. For intermediate nodes standing off Az/2 from those mentioned above, the 
scheme (5) does not yield a second order of appoximation. 

The main part of the results of this paper is obtained by using the algorithm described. 
A simplified modification is proposed in [15], that includes two steps: calculation of the 
diffraction perturbations at the step Az at the beginning and then calculation of the per- 
turbed density and computation of the self-action. This algorithm is simpler in realization 
but is of first order of approximation in the coordinate x. Comparative computations using 
all the algorithms described above are executed for certain modifications. Good correspon- 
dence is obtained within the limits of the error in the approximation. 

Let us turn to an elucidation of the results. The computed domain was selected such 
that L x = 6.4, 12.8; Ly = 6.4, 12.8, 25.6. The number of nodes of the computational mesh 
was N x = 64, 128 and Ny = 64, 128, and the maximal step of the computational mesh is Ax = 
0.1; Ay = 0.1. The fundamental volume of calculations is executed for L x = 6.4; Ly = 6.4; 
Ax = 0.i; Ay = 0.i; Az = 0.i; N x = 64; Ny = 64. 

Changes in the initially collimated Gaussian beam along the track in the subsonic flow 
(M = 0.8) are shown in Fig. i. The attenuation parameter was assumed zero (N~ = 0). The 
Fresnel number is sufficiently large (F = 5) so that the diffraction deliquescence does not 
predominate over the focusing due to the thermal self-action. Equal density contours are 
represented (on the left: 0.75Plmax, 0.SPlmax, 0.25Plmax; Pz = 0, 0.75Plmin, 0.5Plmin, 
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0.25plmin)~as are equal intensity contours (at the middle: 0.91ma x, 0.751ma x, 0.51ma~:, 
0 251max, v.,Ima x) and domains of intensity amplification (Al = I - IIz=0 > 0, 
shaded) and diminution (Al < 0, unshaded), contours with negative values of the density 
function Pl are superposed by dashed lines, the contour Pl = 0 is extracted by a heavy 
curve. The beam is broadened to approximately the distance Zphy s = O. 6z T and the intensity 
peak diminishes. Intensity peak shifting simultaneously occurs upstream in the gas in the 
density growth domain. The perturbed gas in this domain acts as a collecting lens on the 
radiation. The intensity peak (its location is indicated by the cross) starts to grow and 
the beam is focused as a whole in the section z = 1.2 as a comparison of the intensity ampli- 
fication and diminution domains shows. The effective transverse beam dimension diminished 
during focusing and the defocusing influence of the diffraction gradually grows. Conse- 
quently, the magnification of the beam intensity is continued just to a certain section that 
can provisionally be called focal. In the example under consideration it is located at 
Zphy s z 1.15z T. Beyond this section the intensity peak decreases rapidly. The isochore pat- 
tern does not undergo qualitative changes along the beam path, there are a rarefaction domain 
in the thermal wake and a gas compression domain in the windward part of the beam. In place 
of the concentric circles the isophots acquire a crescent shape. 

Changes in the intensity peak along the track are represented in Fig. 2 for changes in 
the similarity parameters: a) the Fresnel number F = i-i0 (M = 0.8; N~ = 0); b) the absorp- 
tion parameters N~ = 0.5 (M = 0.8; F = 5); c) the Mach number M = 0-0.95 (F = 5, N~ = 3). 
The convective mode (M = 0) is included for completeness of the investigation as the limit 
case as M + 0. Modifications cause special interest in nonlinear optics when the beam is 
propagated a significant distance for a negligible change in the intensity peak (or a zertain 
neighborhood of it), the so-called quasi-waveguide modes [1-3, 6, 17]. The results pre- 
sented above show that in contrast to the supersonic modes sufficiently protracted qua:~i- 
waveguide sections of the track are not observed in the subsonic mode. The length of :~uch 
sections is an order of magnitude less than the thermal self-action length. 

As the number M approaches one the perturbation domain of the gasdynamic quantiti~s 
grows, as is known, especially in the direction transverse to the velocity vector. Denstiy 
and intensity perturbations are increased radically, and the length of thermal self-action 
is shortened [5]. As in [8], it is convenient to extract the "isobaric" and acoustic compo- 
nents of the density perturbations 

P~ =P~,~-kP,,2; P,,~-- i I(x' ,  g, z)dx" (6) 

fo r  i n v e s t i g a t i o n  of the  near - sound  domain of Mach numbers (but  not  ye t  t r a n s o n i c  [M - 1 1 > 
c2/a). Then the "acoustic" component (that is proportional to the pressure perturbation) 
satisfies the Poisson equation 

02P1,~ a2p~,~ _ M2 aI 
(I --Mz) ~ + ap a-7' (7) 

Pt.d,.v-~- ~0.  (8) 

The method of expansion in discrete Fourier series is used to construct the solution of this 
equation as for (3), however, the expansions are in the sines and cosines (and not in the 
complex exponentials): 

m ~ L~ Ly 

f ~m(xi-Lx/2)  [an(y+L~/2)  ] I = E ~  lm. cos ' ]sin 
~ L~ j ~ " j (io) 

The expression (9) permits automatic satisfaction of the boundary conditions on the mesh 
domain boundary for x = • , y = • The equation (7) yields the following algebraic 
relation between the spectral coefficients 

Pmn = - - l , m  ~mM~/Lx 
(1 - -  M2)(zm/Lx) z "-k (an/Lu)Z " ( 11 ) 

The algorithm (6)-(11) and the above-mentioned algorithm to calculate the density pertu:cba- 
tion by using expansions in complex exponentials [i0] were realized in parallel and dis- 
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Fig. 3. Isochores and isophots in the near field of a 
Gaussian beam in subsonic flow of a weakly absorbing 
gas obtained by using the linearized solution. M = 0.6 
and 0.8, F >> i; N~ << i; N = 0.3. 

played good agreement between the results. For numbers M quite close to one, 
PI,2 whose calculation can be realized by the approximation formula in [18] 

0~' ~ - Y 1  - -  M~ ! [ ~  (z + t, 0) - -  r  ( x - -  t, 0)] , 

the function 

(12) 
M~ 

r (x, ~) -- ~ l (x, y, z) exp ( - -  i ~ )  dy 
2~ 

y i e l d s  t h e  main c o n t r i b u t i o n  t o  t h e  d e n s i t y  p e r t u r b a t i o n .  

Comparison of  t h e  r e s u l t s  o f  c o m p u t a t i o n s  by means of  ( 6 ) - ( 1 1 )  and by t h e  app rox ima te  
f o r m u l a  (12)  pe r fo rmed  f o r  M = 0.95 y i e l d e d  good ag reemen t .  The c o m p u t a t i o n s  f o r  numbers 
M > 0.95 were  r e a l i z e d  by means o f  (12) .  

The i n f l u e n c e  of  t h e  mesh domain d imens ions  on t h e  a c c u r a c y  of  t h e  c o m p u t a t i o n s  was 
i n v e s t i g a t e d .  The r e s u l t s  were compared f o r  L x ,  Ly = 6 . 4 ,  12 .8 ,  25.6 i n c l u d i n g  f o r  d i f f e r -  
e n t  d i m e n s i o n s  a long  t h e  l o n g i t u d i n a l  (L x) and t r a n s v e r s e  (Ly) c o o r d i n a t e s  t o  t h e  f low as 
w e l l  as  f o r  m a g n i f i e d  d imens ions  o f  t h e  mesh domain used  f o r  t h e  c a l c u l a t i o n  o f  t h e  f i e l d  
f u n c t i o n  u;  I t  i s  e s t a b l i s h e d  t h a t  i t  i s  s u f f i c i e n t  t o  doub le  t h e  l o n g i t u d i n a l  d imens ion  
L x and q u a d r u p l e  t h e  t r a n s v e r s e  d imens ion  Ly f o r  t h e  mesh domain o f  t h e  f u n c t i o n  Pz as  com- 
p a r e d  w i t h  t h e  mesh domain o f  t h e  f i e l d  u d u r i n g  c a l c u l a t i o n  o f  t h e  d e n s i t y  f u n c t i o n  w i t h  
e r r o r  l e s s  t h a n  1% in  t h e  M number r ange  0 . 8 - 0 . 9 5 .  As t h e  t r a n s v e r s e  d imens ion  Ly i s  
doub led  and t h e  l o n g i t u d i n a l  d i m e n s i o n  L x i s  k e p t  unchanged ,  t h e  e r r o r  in  c a l c u l a t i n g  t h e  
f u n c t i o n  Pl i s  s e v e r a l  p e r c e n t  w h i l e  t h e  e r r o r  in  c a l c u l a t i n g  t h e  f i e l d  f u n c t i o n  u i s  l e s s  
t h a n  a p e r c e n t .  

The method of expansion in discrete Fourier series with utilization of the fast Fourier 
transform permits filling in the gap for the subsonic mode in the set of linearized solutions 
of the propagation equation (i). Let us recall that this solution, which is valid in the 
geometric optics approximation (L << ka 2, F >> i) for weak self-action (L << ZT, N << i) and 
for weak absorption (L << a-l, Na << i) predicts defocusing of the Gaussian beam in isobaric 
approximation modes (heat conductive and convective) and passage from defocusing to focusing 
somewhere in the subsonic mode as the number M increases [5]. Application of the Fourier 
series expansion method permits this solution to beobtained in the following form conven- 
ient for computations 

I = exp { - -  x z - -  yz - -  N~z  - -  N f  (x, y)}, 

2-I ~"-~  P ~  [ ( ~ ' n i 2 , ,  L~ I \ -~--~,j ( ~n /2 ~/J f (x, y) = + i sin sin + 

(13) 
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x 

-b ~ ] ~  P , n n m  n amLx cos ~zm sin ~zr~ + ~_~,n .~ P,.~ ~nLu .... sin ~z= sin ~z. --2x exp(--x2--y2)--(l--4tf)exo(--y 2 ) .  -| exp(-- x")dx', 

~m (~ _L L~/2); ~ := ~ (y + Ly/2). 
~m = - L=- Lj 

Here Pmn are the spectral coefficients of the density perturbation functions Pz,2 that are 
related to the spectral coefficinets Imn for the initial intensity distribution (for ~: = 0) 
by the relationships (Ii) while the thermal self-action parameter N equals the square of the 

dimensionless coordinate z: N = z 2. 

Isochores and isophots are constructed in Fig. 3 for two values of the number M (M = 
0.6 and 0.8) between which the diminution of the intensity peak at the selected distarce 
Zphy s = 0.548z T (N = 0.3) goes over into an increase as compared with the initial value. 
Just as the linearlized solutions for convective and supersonic modes [5], the linearized 
solution for the subsonic mode (13) yields a qualitatively correct results for sufficiently 
large values of the self-action parameter N~<0.3. 

Summarizing, we note the following important situations. To construct the solution in 
the subsonic thermal self-action mode it is necesary to increase the computed field for the 
density function Pl two-four times in the near-sonic domain M > 0.8 as compared with the comr 
puted domain for the field function u. For M > 0.95 the approximate solution of the Poisson 
equation can be used in which the dependence on the coordinate transverse to the gas flow 
is neglected. A sufficiently broad domain exists in the similarity parameter space (Mach 
number-Fresnel number-absorption parameter) in which the Gaussian beam is focused init[al!y. 
Quasi-waveguide modes of Gaussian beam propagation are not, detected. The linearized solu- 
tion describes the main qualitative features of the thermal self-action effect in the ;~ub- 
sonic gasdynamic mode, as in the convective and the supersonic modes which has been es':ab- 

lished earlier. 

NOTATION 

X, Y, Z, coordinates: u, complex electromagnetic field function: F = ka2/L, Fresnel num- 
ber; k = 2~/X, wave number; X, radiation wavelength; a, exponential beam radius, L, charac- 
teristic track length; M = V0/c, Mach number; Vo, unperturbed gas flow velocity; c, sot~nd 
speed therein; N = =L, radiation absorption factor; N = (L/ZT)2, nonlinearity (self-action) 

parameter; z T = a//e(n0 - l)/n0, length of thermal self-action; n 0, refractive index oI the 
unperturbed gas; E = ~10a/p0V0h0, scale of the gas density perturbation; I0, characteristic 
radiation intensity; P0, unperturbed gas density; h0, unperturbed gas enthalpy; Pl, dimen- 
sionless gas density perturbation function; Pmn, Imn, spectral coefficients for the gas den- 

sity and the radiation intensity. 
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COMPUTATION OF LAMINAR VISCOUS FLUID FLOWS IN ARBITRARY 

AXISYMMERIC CHANNELS 

V. E. Karyakin, Yu. E. Karyakin, 
and A. Ya. Nesterov 

UDC 532.516 

h finite-difference method is proposed for computing flows in axisymmetric chan- 
nels of arbitrary configuration in the presence of a swirling stream. 

One of the widespread causes of fluid flows in modern power plant elements is axisym- 
metric motion. It is characteristic for diffuser and expander type channels, axiradial tur- 
bine channels, different kinds of branchpieces and is accompanied sufficiently often by a 
swirling stream that raises the intensity of the heat and mass transfer processes that occur. 

Laminar fluid flow in the initial section of a straight annular channel is studied in 
the presence of a swirling stream in [i], while an annular channel with arbitrary generators 
is examined in [2]. The formation of stream separation zones near the channel walls has been 
established. 

Swirling fluid flows in a straight cylindrical pipe without a central body have been 
examined in [3, 4]. A reversible flow domain with several recirculation centers occurs on 
the pipe axis for high values of the rotation parameter. 

A computation of axiradial channels of arbitrary configuration in the presence of a swirl- 
ing stream is performed in [5]. The influence of the Reynolds number and the rotation para- 
meter on the fundamental stream characteristics has been investigated. An analogous problem 
is solved in [6] ~without taking swirling into account. 

The stream function, vorticity, and the circumferential velocity are the main dependent 
variables in [1-6]. However, solution of the Navier-Stokes equations is realized more and 
more often with respect to the so-called physical variables (the velocity and pressure compo- 
nents). The mode of writing the Navier-Stokes equations that characterize fluid flow in arbi- 
trary axisyrametric channels is set down below and a difference method is proposed for the 
solution of such problems. 

As is known [8], the nonstationary motion of an incompressible viscous fluid in an ar- 
bitrary curvilinear nonorthogonal coordinate system x I, x =, x S is described by the following 

Oo~ .~ O (;k~) = Op 1 0 ( 
at ax k ax' -t- Re ~x k . ~ '  . . . .  Ox ~ ) ,  (1) 

O~a = O, i ,  k, I = 1, 2 ,  3 .  ( 2 )  
Oxk 

equations 

Here and henceforth, subscripts repeated twice assume s~ation over all their allowable 
values. The velocity vector components in the x I, x 2, x 3 coordinate system are related to 
the Cartesian components by known tensory analysis relationships (~ = i, 2, 3): 

Ox i Ox ~ = v ~ Oy~ , 
= , d = u~  u~  = v~ . . . . . . . . . .  ( 3 )  

vi u~ Ox ~ " Og~ O x i 

while the ~uantities vi, ~i, ~k~ are determined by using matrices of the derivatives 3xi/3y~ 
and 3y~/Sx I fixed at the point of differentiation Q: 
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